Biomath Manuscripts

Mette Olufsen



Type of paper

* Pure math
* Applied math
* Biologists

* Engineering



The typical math paper

* Introduction
e Sections describing the mathematical innovation

e Sections illustrating and discussing mathematical method



Sclences

Introduction (lots of references)
* Formulate the problem/question
* Why is it important
 Whatis novel
* What has been done previously (experimentally and mathematically) and why is your contribution important
 Whatisincluded in this paper (outline) and what did you find [allow you to judge if you should continue reading]

Methods (some references)
* Data (include reference to approval of experimental protocols)
* Model
* Model analysis
 Statistical methodology (could be part of model analysis)

Results (no references)
* Present results but do NOT judge the results

Discussion (lots of references)
» Discusses results and relates your findings to previous studies, and to what has been highlighted in the introduction

* Limitations
Conclusions
Acknowledgements

Appendices/Supplements
* Data
e Simulation results with all data
* Code



Writing guides

* Applied Math

e video: https://www.youtube.com/watch?v=o0NgqQyFOGfY

e and the slides: https://www.slideshare.net/masonporter/paper-writing-in-applied-
mathematics-slightly-updated-slides

* Jay Humphrey (Texas A&M)
e https://www.morganclaypool.com/doi/abs/10.2200/S00128ED1V01Y200809ENG009

* Biomedical Engineering
* http://www.biomedicaleditor.com/active-voice.html


https://www.youtube.com/watch?v=oNgqQyF0GfY
https://www.slideshare.net/masonporter/paper-writing-in-applied-mathematics-slightly-updated-slides
https://www.morganclaypool.com/doi/abs/10.2200/S00128ED1V01Y200809ENG009

Authorship

* Math/Applied Math (few authors)
* Alphabetical

» Sciences (many authors)
* First author (the person who wrote the paper and did most of the experiments, often student or postdoc)

e Last author (the PI)
Beginning — junior people, list the ones contributing the most first

* End - senior people

Joint fist authorship
Joint last authorship

* People whose data you use may want to be co-authors

* Make sure authorship has been clarified before the paper is submitted



How to write a paper

* Make figures illustrating the story

Write introduction
 What is the problem to be addressed here and why is it important

Write the results section

Write the method section

Write the introduction

Write the conclusion

Re-iterate until a cohesive story is told

Simple but “complete” make sure that each manuscript focus on ONE story



Figure captions

e Mathematics
e Simple

e Sciences

 Comprehensive —you should be able to read the figure caption and
understand what it illustrates WITHOUT reading the text



Figure captions examples
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FIGURE 2. A Schottky structure with r = 2.
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Fig.3. Effectof a 1-week drop in temperature on the number of adult females. A sudden drop in temperature
from 25.8°C (the annual average) to 20°C is simulated between days 35 and 41 inclusive, under various rainfall
regimes: (a) actual daily rainfall, (b) rainfall every day, (c) rainfall every 4 d, and (d) rainfall every 10 d. The
amount of daily rainfall is adjusted in the periodic regimes so that the annual total is the same across all four
regimes. Plotted curves correspond to the time course of the number of adult females according to the Skeeter
Buster model (red curves) and the AedesBA model (blue curves). All results shown are averages over 20
simulation runs.
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Fig. 4 Pressure and flow predictions along the pulmonary arterial network using linear (dashed line ‘- -*) and non-linear (solid lines ‘") wall

models. Results are shown for a representative control (left) and hypertensive (right) mouse. The center panel (a) show the least squares error

avenged across CTL and HPH groups.
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Figure 4. Quantification of BrdU positive cells co-labeled with either GFAP or Foxj1-tdT, or both in
different regions of the lesion at 2 weeks after SCI. (a) Schematic of 5 dorso-ventral levels quantified and
graphs showing the total number of cells per tissue volume and mean percent of BrdU labeled cells that are
co-labeled with GFAP or Foxj1-tdT or both across the entire astrocyte scar (AS). Total values were derived by
averaging counts from 6 boxes across the entire transverse spinal cord at each of the 5 levels as shown in (b,c).
(b) Schematic of 6 counting boxes evaluated across the transverse spinal cord at dorsal and ventral levels D,
and V,. Graphs show the mean number of cells per volume and mean percent of BrdU labeled cells that are co-
labeled with GFAP or Foxj1-tdT or both across the entire transverse plane, as well number or percent of cells per
box. (¢) Schematic of 6 counting boxes evaluated across the transverse spinal cord at the middle (M) level of the
ependymal layer (Ep). Graphs show the mean number of cells per volume and mean percent of BrdU labeled
cells that are co-labeled with GFAP or Foxj1-tdT or both across the entire transverse plane, as well number or
percent of cells per box. (d) Schematic of lesion core (LC) at the middle (M) level containing the ependymal
layer (Ep). Graphs show the total number per volume of BrdU labeled cells that are co-labeled with GFAP or
Foxj1-tdT or both across the entire transverse plane, as well the percent of such cells in the entire SCI lesion
that are located in either the lesion core or astrocyte scar. n= 6 per group, *p < 0.001 versus GFAP + BrdU only
(ANOVA with Newman-Keuls), Ap < 0.001 (t-test).



Tables

Table 5 Bounds for optimization.

Parameter B D1 Y (r1.ra,c1)
Lower bound  f Bo/2m 1 0.05
Upper bound 2580 2fo 2r 2.5

Table 6 Optimized values for individual mice in each group. Parameters were computed back from optimized values of 8, p1, ¥, r1, r2 and ¢y. Last row present the P-value, computed using the

ttest in the Matlab, for all parameters inferred using the linear and nonlinear wall models. A P-value< 0.05 indicates a significant change in parameter value due to HPH.

Linear Nonlinear
Control Rr Crx 1073 Igx1072 C,/Cr(%) tx1072 a(%) S | pi Y Rr Crx 1073 Igx1072 C,/Cr(%) ©x1072 a(%) S
1 67.5  90.7  3.09 29.6 79.1 28.0 2.9 199 286 26 941 245 31.7 64.2 23.0 8.6 147
2 619 280  3.64 30.4 84.6 10.2 4.5 640 | 41.0 22 347 26l 31.8 88.0 9.10 124 654
3 36.1 224 332 403 69.8 7.40 8.4 587 | 153 25 344 26l 33.2 72.2 8.20 6.0 376
4 56.3 469  3.79 29.8 82.9 17.8 3.0 369 239 30 589 222 33.8 82.6 13.1 1.0 348
5 49.9 523 410 31.7 81.3 21.4 4.1 606 | 198 47 651 294 33.4 73.0 19.2 13.5 702
6 521 65.6  2.86 36.0 74.5 18.8 5.4 125 |22.1 40 787 203 38.8 67.4 16.0 123 99
7 70.4 1029 3.0l 323 823 31.0 5.8 737 | 47.8 35 998 265 32.5 85.8 26.5 1.6 698
HPH B Rt Crx1073 rx1072 C,/Cr(%) ©x1072 a(%) S | p1 y Ry Crx1073 Igx1072 C,/Cr(%) ©x1072 a(%) S
1 1513 1462  0.67 56.5 62.8 9.80 154 49 1027 1.6 1475 057 58.4 81.9 8.40 129 32
2 863 943  1.72 36.3 73.2 16.2 102 593 |366 26 1009 1.52 39.3 76.3 15.3 13.0 450
3 121.0 1556 1.23 33.3 73.5 19.1 7.0 407 | 822 2.1 1587  1.02 35.7 84.6 16.2 6.9 467
4 1174 1422 116 429 71.0 16.5 144 63 49.8 22 1464  0.94 44.3 75.8 13.7 13.4 41
5 1082 1309 1.11 48.0 66.6 14.5 150 113 | 735 23 133.5  0.85 49.2 715 11.4 13.0 42
P-value ~ 0.0001 0.0009 0.000 0.02 0.008 0.35* 0.0008 0.15* | 0.004 0.035 0.0007 0.000 0.007 0.51* 0.33* 0.52* 0.23*

B (mmHg), Ry (mmHgs/ml), Cr (ml/mmHg), Iz, Cp/Cr(%) ,a (dimensionless), p; (mmHg), ¥ (dimensionless), S: least square error.
*Differences in these parameter values due to HPH is statistically significant.



Equations

* Methods section
* Appendix
* Figure

SHOCK JuLy 2005

A more complex model was used to create simulated populations
of septic patients and to simulate a clinical trial of anti-TNF
therapy (15). In this paper, we report a further enhancement to
our mathematical model of acute inflammation and shock,
based on some known underlying cellular and molecular mecha-
nisms of inflammation. Our model represents the simultaneous
interactions of several different pathways. Specifically, we show
that it can account for the temporal changes in the concen-
trations of three selected cytokines and nitric oxide by-products
in mice, for disparate initial insults involving bacterial lipo-
polysaccharide (LPS, endotoxin), surgical trauma, and
hemorrhage.

MATERIALS AND METHODS

Experimental procedures

Mice—AIll animal experiments were approved by the Institutional Animal Care
and Use Committee of the University of Pittsburgh. The experiments were
performed in adherence to the National Institutes of Health Guidelines on the Use of
Laboratory Animals. All studies were carried out in C57B1/6 mice (610 weeks old;
Charles River Laboratories, Charles River, ME).

Endotoxemia protocol—Mice received either LPS (from E. coli O111:B4, 3, 6, or
12 mg/kg intraperitoneally; Sigma Chemical Co., St. Louis, MO) or saline control.
At various time points following this injection, the mice (four to eight separate mice
per time point) were euthanized, and their sera were obtained for measurement of
various analytes (see below). All of the mice survived this high dose of LPS until the
final time point (24 h following injection of LPS).

Surgical trauma and hemorrhagic shock protocols—For surgical trauma and
hemorrhagic shock treatment, mice were anesthetized, and both femoral arteries
were surgically prepared and cannulated. For hemorrhagic shock, the mice were then
subjected to withdrawal of blood with a mean arterial pressure (MAP) maintained at
25 mmHg for 2.5 h with continuous monitoring of blood pressure as described
previously (16). The normal MAP in mice is approximately 100 mmHg. In the
resuscitated hemorrhage groups, the mice were resuscitated over 10 min with their
remaining shed blood plus two times the maximal shed blood amount in lactated
Ringer solution via the arterial catheter. For trauma, only the surgical preparation
was conducted. In some cases, LPS was administered intraperitoneally to mice
undergoing hemorrhagic shock. Animals were euthanized by exsanguination, and
their serum analyzed as described below.

MoDEL OF ACUTE INFLAMMATION 75

Analysis of cytokines and NO, /NO3; —The following cytokines were measured
using commercially available ELISA kits (R&D Systems, Minneapolis, MN): TNF,
IL-10, and IL-6. Nitric oxide was measured as NO, /NO;3 ™ by the nitrate reductase
method using a commercially available kit (Cayman Chemical, Ann Arbor, MI) (17).
Aspartate aminotransferase (AST) was measured using a commercially available kit
(Vitros Chemistry™; Ortho-Clinical Diagnostics, Raritan, NJ) according to manu-
facturer’s instructions.

Mathematical model of acute inflammation

We constructed a mathematical model of acute inflammation that incorporates
key cellular and molecular components of the acute inflammatory response (see
Results, Table 1, and Appendix). The mathematical model consists of a system of 15
ordinary differential equations that describe the time course of these components.
Included in the model equations are two systemic variables that represent mean
arterial blood pressure and global tissue dysfunction and damage. “Global tissue
damage/dysfunction” describes the overall health of the organism because the hall-
mark of the pathology accompanying sepsis and hemorrhagic shock is the eventual,
sequential failure of multiple organs. Given the complexity of simulating individual
organs, we approximated this process by treating it as a gradual, ongoing process
occurring in the whole body and driven by inflammation. Thus, unrecoverable tissue
damage/dysfunction served as a surrogate for death, whereas damage/dysfunction
that tended to return to baseline over a several-day period was a proxy for survival. In
the model, pathogen-derived products, trauma, and hemorrhage are initiators of
inflammation. (We note that hemorrhage is caused by injury that disrupts the
integrity of blood vessels, and thus the two processes must be included in an accurate
simulation).

Each equation was constructed from known interactions among model compo-
nents as documented in the existing scientific literature. In deriving the mathe-
matical model, we balanced biological realism with simplicity. Our goal was to find
a fixed set of parameters that would qualitatively reproduce many known scenarios
of inflammation found in the literature, correctly describe our data, and serve as a
platform for eventually testing novel predictions experimentally.

The model and parameters were specified in three stages. In the preliminary
stage, the model was constructed so it could reproduce qualitatively several different
scenarios reported in the literature. In this stage, direct values of parameters such as
cytokine half-lives were used when available. In the second stage, the model was
matched to our experimental data by adjusting some of the parameters using our
knowledge of the biological mechanisms together with the dynamics of the model to
attain desired time course shapes. In the third stage, the parameters were optimized
using a stochastic gradient descent algorithm that was implemented in software of
Immunetrics, Inc. (Pittsburgh, PA).

The units of all the quantities in the model were specified so that for the
experimental protocols tested they ranged from zero to one. This was done for
computational convenience and has no implications for the underlying biology.



Appendix

SHOCK JuLy 2005

process represented by this particular arrow. In addition, are
two systemic variables representing blood pressure and tissue
damage/dysfunction. The effect of trauma is expressed as an
exponential decay of influence after an initial insult. It repre-
sents possible released cellular material that can trigger inflam-
mation. The function fB(B) is phenomenological and represents
the stimulatory effect of a decrease in blood pressure on trig-
gering a stress response. This occurs in a variety of ways, and
we are currently examining how to model it more exactly as
part of ongoing projects in larger animals. Small deviations
from normality probably are of little consequence, whereas
larger deviations are proportionally more harmful (and rapidly
50) as the ability of the organism to compensate decreases. This
is what explains the phenomenological fourth-power exponent.
For numerical ease, the variables of the equations are defined in
abstract units of concentration. The actual units are restored
with a linear scaling factor when compared to experimental
data. The time unit is fixed at hours. The differential equations
were solved numerically using the XPPAUT freeware written
by Dr. G. B. Ermentrout (University of Pittsburgh, Department
of Mathematics; www.math.pitt.edu/~phase) as well as propri-
etary software of Immunetrics, Inc. The fitting process included
quantitative data, but the overall behavior of the model had also
to be compatible with various qualitative scenarios extracted
from the literature. These scenarios are listed in Table 2. Failure
to comply with any of those qualitative behaviors resulted in
discarding a given model.

Equations
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Fia. A1. A simplified version of macrophage
dynamics. In the model used herein, resting macro-
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respective rates (gray dotted line). Each process is
supported by a literature search.



Myocardial metabolism , mechanics, and remodeling (Projects 2 and 3)

Lung gas exchange (Project 3) Strain sensing and autonomic reflexes (Project 1)
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Data and Code

* Work supported by NIH and NSF, code and data should be made
available at least upon request.

* Does not have to be distributed until work has been completed.



Writing guide

By J. Humphrey, Texas A&M



https://www.morganclaypool.com/doi/pdf/10.2200/S00128ED1V01Y200809ENG009

2.2 REMOVING REDUNDANCIES AND UNNECESSARY WORDS

Now that we have a feel for an overall approach to writing well, let us begin to address specific
aspects of “critical editing.” Recall that effective technical writing is first and foremost clear and con-
cise, which for obvious reasons is better written “Recall that effective technical writing is clear and
concise.” One way to ensure such characteristics in our writing is to remove redundancies and unneces-
sary words, sentence by sentence. Let us consider a few specific examples below (note: the original
version is on the left and the corrected version is on the right, hence it is best to cover the right side

first and consider how you might improve each example before looking at the suggested change):

Concise wording

is used to develop

develops

is dependent on

depends on

We propose to use the combination of

We propose to combine

results in the simplification of

simplifies

It is interesting to note that

Note that (or, omit)

The cells were cultured for a period of three The cells were cultured for three weeks.

weeks.

The temperature of the chamber remained The chamber remained between 35 and 39°C.
between 35 and 39°C.

due to the fact that because
in order to to
in spite of the fact that despite
as a result of Omit
appears to be seems
experienced a peak at peaked at
in the event that if
was found to be was

a number of

many (or, various)
y

The associated mechanisms are not known at The associated mechanisms are not known.
this time. (or, . . .remain unknown.)
The experiments were performed over a The experiments were performed for 10 hours.
period of 10 hours.
The new transducer is much smaller in size, The new transducer is smaller, which
which simplifies the design. simplifies the design.
The temperature increased at a rate of 3°/min. The temperature increased at 3°/min.

The signal is lost below a threshold level of The signal is lost below a threshold of 10 Hz.

may be a mechanism responsible for may cause
It is well-known that Omit
for a long period of time for a long period

10 Hz.

is described in detail in

is detailed in

in the absence of

without

It is not uncommon that

It is common that

The finding is not inconsistent with

The finding is consistent with




Concise wording

Because the structure is assumed to remain

circular, . . .

Assuming the structure remains circular, . . .

2.3 ACTIVE VOICE, FIRST PERSON, AND DIFFERENT TENSES
2.3.1 Voice

In active voice, the subject of the sentence performs the action indicated by the verb. Conversely, in
passive voice, the subject of the sentence receives the action of the verb. The simple example below

distinguishes between passive and active voice:

This will enable us to develop a better

understanding of. . .

This will enable us to understand better. . .

Passive voice: The data were analyzed by him using an ANOVA.?
Active voice: He analyzed the data using an ANOVA.

This finding is the opposite of that reported
by. ..

This finding is opposite that reported by. . .

The specimen is connected to the device

through a custom cannula.

The specimen connects to the device through

a custom cannula.

The model is capable of describing. ..

The model can describe. . .

Table 1 is a list of all findings. . .

Table 1 lists all findings. . .

The output signal is fed into a signal

conditioner.

The output signal feeds into a signal

conditioner.

The next section is a brief description of the

experimental methods.

The next section briefly describes the

experimental methods.

In the next section, the underlying theory is

given.

The next section gives the underlying theory.

The faculty advisor was the supervisor of both
the undergraduate and the graduate students.

The faculty advisor supervised both the

undergraduate and the graduate students.

In our current research, attention is directed to

finding the mechanism.

Our current research directs attention to

finding the mechanism.

The theory is dependent on five basic postulates.

The theory depends on five basic postulates.

The temperature readings will be dependent

upon the contact stress. . .

The temperature readings will depend upon

the contact stress. . .

X was used to create a surface-confined

computational mesh.

X created a surface-confined computational

mesh.

Our laboratory technician also serves as the

budget manager.

Our laboratory technician also manages the

budgets.

Increasing evidence has implicated the

importance of. . .

Increasing evidence implicates the importance

of. ..

The following example is an illustration of the

basic concepts of. . .

The following example illustrates the basic

concepts of. ..

Three different sectioning planes were used to

form. ..

Three different sectioning planes formed. . .

Experimental noise is increased when

unshielded cables are used.

Experimental noise increases with the use of
unshielded cables.

A reader’s attention is increased by the liberal

use of figures and schematic drawings.

A reader’s attention increases with the liberal

use of figures and schematic drawings.
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Selection bias at the heterosexual
HIV-1 transmission bottleneck

Jonathan M. Carlson,* Malinda Schaefer, Daniela C. Monaco, Rebecca Batorsky,
Daniel T. Claiborne, Jessica Prince, Martin J. Deymier, Zachary S. Ende, Nichole R.
Klatt, Charles E. DeZiel, Tien-Ho Lin, Jian Peng, Aaron M. Seese, Roger Shapiro, John
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INTRODUCTION: Heterosexual HIV-1 trans-
mission is an inefficient process with rates
reported at <1% per unprotected sexual ex-
posure. When transmission occurs, systemic
infection is typically established by a single
genetic variant, taken from the swarm of ge-
netically distinct viruses circulating in the
donor. Whether that founder virus repre-
sents a chance event or was systematically
favored is unclear. Our work has tested a
central hypothesis that founder virus se-
lection is biased toward certain genetic
characteristics.

RATIONALE: If HIV-1 transmission in-
volves selection for viruses with certain
favorable characteristics, then such advan-
tages should emerge as statistical biases
when viewed across many viral loci in many
transmitting partners. We therefore identi-

Transmission probability

fied 137 Zambian heterosexual transmission
pairs, for whom plasma samples were avail-
able for both the donor and recipient part-
ner soon after transmission, and compared
the viral sequences obtained from each
partner to identify features that predicted
whether the majority amino acid observed
at any particular position in the donor was
transmitted. We focused attention on two
features: viral genetic characteristics that
correlate with viral fitness and clinical fac-
tors that influence transmission. Statistical
modeling indicates that the former will be
favored for transmission, while the latter
will nullify this relative advantage.

RESULTS: We observed a highly significant
selection bias that favors the transmission
of amino acids associated with increased fit-
ness. These features included the

of the amino acid in the study cohort, the
relative advantage of the amino acid with
respect to the stability of the protein, and
features related to immune escape and com-
pensation. This selection bias was reduced
in couples with high risk of transmission.
In particular, significantly less selection bias
was observed in men with genital inflam-
mation and in women (regardless of inflam-
mation status), compared to healthy men,
suggesting a more permissive environment
in the female than male genital tract. Con-
sistent with this observation, viruses trans-
mitted to women were characterized by
lower predicted fitness than those in men.
The presence of amino
acids favored during
transmission predicted
Read the full article  which individual virus
at http://dx.doi -
org/10.1126/ within a donor was
science.1254031 transmitted to their
partner, while chroni-
cally infected individuals with viral popu-
lations characterized by a predominance of
these amino acids were more likely to trans-
mit to their partners.

CONCLUSION: These data highlight the
clear selection biases that benefit fitter vi-
ruses during transmission in the context of
a stochastic process. That such biases exist,
and are tempered by certain risk factors,
suggests that transmission is frequently
characterized by many abortive transmis-
sion events in which some target cells are
nonproductively infected. Moreover, for
efficient tr issi some changes that

Cohort frequency

Fitter viruses (red) are favored more in woman-to-man (bottom curve) than in man-to-
‘woman (top curve) transmission. The probability that a majority donor amino acid variant is
transmitted is a function of relative fitness, here estimated by the frequency of the variant in the
Zambian population. Even residues common in the population are less likely to be transmitted to
healthy men than to women, indicative of higher selection bias in woman-to-man transmission
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favored survival in the transmitting part-
ner are frequently discarded, resulting in
overall slower evolution of HIV-1 in the pop-
ulation. Paradoxically, by increasing the se-
lection bias at the transmission bottleneck,
reduction of susceptibility may increase the
expected fitness of breakthrough viruses
that establish infection and may therefore
worsen the prognosis for the newly in-
fected partner. Conversely, preventive or
therapeutic approaches that weaken the
virus may reduce overall transmission rates
via a mechanism that is independent from
the quantity of circulating virus, and may
therefore provide long-term benefits to the
recipient if transmission does occur. m
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Estimating Allele Age and Selection Coefficient

from Time-Serial Data

Anna-Sapfo Malaspinas,*:' Orestis Malaspinas,”* Steven N. Evans,® and Montgomery Slatkin**

*Centre for Geogenetics, Natural History Museum of Denmark, University of Copenhagen, 1350 Copenhagen, Denmark, fInstitut
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ABSTRACT Recent advances in sequencing technologies have made available an ever-increasing amount of ancient genomic data. In
particular, it is now possible to target specific single nucleotide polymorphisms in several samples at different time points. Such time-
series data are also available in the context of experimental or viral evolution. Time-series data should allow for a more precise inference
of population genetic parameters and to test hypotheses about the recent action of natural selection. In this manuscript, we develop
a likelihood method to jointly estimate the selection coefficient and the age of an allele from time-serial data. Our method can be used
for allele frequencies sampled from a single diallelic locus. The transition probabilities are calculated by approximating the standard
diffusion equation of the Wright-Fisher model with a one-step process. We show that our method produces unbiased estimates. The
accuracy of the method is tested via simulations. Finally, the utility of the method is illustrated with an application to several loci
encoding coat color in horses, a pattern that has previously been linked with domestication. Importantly, given our ability to estimate
the age of the allele, it is possible to gain traction on the important problem of distinguishing selection on new mutations from
selection on standing variation. In this coat color example for instance, we estimate the age of this allele, which is found to predate

domestication.

TME-series analysis is widespread in several fields, such

as meteorology, economics, and physics (Hamilton 1994)
with the relation being statistical models designed to deal
with a time-ordered sequence of observations. Such obser-
vations are also prevalent in several areas of biology. Until
recently, however, time-series molecular data were only
available for time spanning a few generations in higher or-
ganisms. Therefore, in the context of population genetics,
time-serial data were mostly limited to viral or experimental
evolution (Wichman et al. 2005; Bollback and Huelsenbeck
2007; Nelson and Holmes 2007; Gresham et al. 2008).

However, with recent advances in DNA sequencing and
DNA preparation techniques, the study of extinct and long
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dead organisms is now entering a new era, an era in which
time-sampled measurements spanning hundreds or thou-
sands of generations for even mammalian species may be
obtained. For example, while previous studies were limited
to short segments of mitochondrial DNA, whole nuclear
genomes are now available from several ancient samples
(Rasmussen et al. 2010; Reich et al. 2010), and it is now ad-
ditionally possible to target specific DNA regions in ancient
organisms (Lalueza-Fox et al. 2007; Ludwig et al. 2009; Rusk
2009). Therefore, time-serial data will become increasingly
available for a whole range of organisms allowing one to test
evolutionary questions using not only present day sam-
ples, but also samples from extinct populations.

The relevant theory to describe such temporal changes in
allele frequency has existed since the advent of population
genetics (Fisher 1922; Wright 1931). Although not very
common, several statistical methods and estimators to deal
with time-serial data have been developed and applied to,
for example, estimate historical changes in population size
(Waples 1989; Williamson and Slatkin 1999; Anderson
et al. 2000; Drummond and Rambaut 2007). More recently,
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Abstract—There is a large body of theoretical studies that investigate factors that affect the evolution of virulence,
that is parasite-induced host mortality. In these studies the host population is assumed to be genetically homogeneous.
However, many parasites have a broad range of host types they infect, and trade-offs between the parasite virulence
in different host types may exist. The aim of this paper is to study the effect of host heterogeneity on the evolution
of parasite virulence. By analyzing a simple model that describes the replication of different parasite strains in a
population of two different host types, we determine the optimal level of virulence in both host types and find the
conditions under which strains that specialize in one host type dominate the parasite population. Furthermore, we
show that intrahost evolution of the parasite during an infection may lead to stable polymorphisms and could introduce

evolutionary branching in the parasite population.

Key words —Evolution of virulence, genetic trade-offs, host heterogeneity, host-parasite coevolution, intrahost evo-

lution, serial passage.
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The relationship between a parasite and its host is a story
of benefits and harms. The parasite benefits from the host by
living in and on it and by using host resources to reproduce.
The parasite’s benefit gives rise to the host’s harm: The life
span of the host is usually shortened by infection, and im-
portant fitness traits of the host, such as fecundity, are often
negatively affected by the parasite (Ewald 1994). However,
by reducing the life span or the fitness of its host, the parasite
may inflict harm upon itself. The question emerges: What
evolutionary forces determine the level of harm inflicted on
the host? In this paper, we focus on the evolution of parasite
virulence, here defined as parasite-induced host mortality.

If virulence were an independent trait, natural selection
should favor parasites with low virulence. A parasite that
does not kill its host has more time to exploit it and to be
transmitted, thus increasing its own fitness. Therefore, in the
long run the parasite should evolve to be avirulent. Never-
theless, there are many examples of intermediately or highly
virulent host-parasite systems with a long coevolutionary his-
tory (Fenner and Ratcliffe 1965; Herre 1993). To account for
virulent host-parasite interactions, trade-offs between viru-
lence and other parasite traits such as infectivity, transmis-
sibility, or reproduction rate were postulated (Anderson and
May 1979, 1981, 1982, 1991; May and Anderson 1979, 1983,
1990; Levin and Pimentel 1981; Bremermann and Pickering
1983; Ewald 1983; Knolle 1989; Frank 1992; Antia et al.
1994). Furthermore, it was argued that in systems in which
the parasite can super- or coinfect hosts or in which the
parasites frequently generate new mutant strains within a
host, a parasite strain with high virulence may have a com-
petitive advantage over less virulent strains within the host
(Hamilton 1972; Bremermann and Pickering 1983; Knolle
1989; Sasaki and Iwasa 1991). In models that take into con-
sideration this competition between different mutants within
a single host in addition to the competition for transmission
between hosts, one finds the persistence of parasite mutants
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that are highly virulent and in some cases too virulent to
survive on their own (Bonhoeffer and Nowak 1994; Nowak
and May 1994; May and Nowak 1995; van Baalen and Sabelis
1995).

The genetic or phenotypic composition of the host popu-
lation also influences the dynamics of a host-parasite system
(Jaenike 1978, 1996; Hamilton 1980; Lively 1987; Lipsitch
etal. 1995; Ebert and Hamilton 1996). Many theoretical stud-
ies investigate the interaction of parasites with a heteroge-
neous host population, concentrating mainly on the stability
of such systems (Cramer and May 1972; Murdoch and Oaten
1975; Roughgarden and Feldman 1975; Comins and Hassel
1976; Fujii 1977; Hassel 1979; Dobson 1990; Jones et al.
1994). Frank analyzed the coevolution of polymorphic host-
pathogen systems using models in which parasite virulence
and host resistance are closely linked (Frank 1991, 1994).

In the present paper, we focus on the evolution of parasite
virulence in a genetically heterogeneous host population. We
investigate a model that describes many parasite strains in a
population of two different hosts. The parasite strains differ
with regard to their reproduction rate and their virulences in
the two hosts, and we assume trade-offs between the parasite
virulences. To our knowledge, there are no studies investi-
gating the evolution of virulence in a genetically heteroge-
neous host population as a consequence of such trade-offs.

In the following two sections, we introduce our model and
give equilibrium solutions. Then we address two main ques-
tions: (1) What determines whether generalist or specialist
strains evolve? and (2) How does host heterogeneity influence
the evolution of parasite virulence? In the last part of the
paper, we extend our model to include within-host evolution
of the parasite. There are many studies reporting changes in
parasite virulence as a consequence of within-host evolution
during an infection (Bull 1994; Ewald 1994; Ebert and Ham-
ilton 1996; Lipsitch and Moxon 1997; Ebert 1998, 1999).
We incorporate these findings, to study their effect on the
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